Part Number Hot Search : 
DSS41A12 PE8004 MBR20 MAX20 BD896A 74AUP1G S5KP90A TM1637
Product Description
Full Text Search
 

To Download L431LVB Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 NIKO-SEM
1.24V Low-Voltage Adjustable Precision Shunt Regulator
FEATURES
L431L
GENERAL DESCRIPTION
The L431L is a three-terminal adjustable shunt regulator utilizing an accurate 1.24V band gap reference. The output voltage can be set to any value between 1.24V (VREF) to 18V with two external resistors as shown in the typical application circuit. The device exhibit a wide operating current range of 0.2 to 100 mA with a typical dynamic impedance of 0.25. Active output circuitry provides a very sharp turn-on characteristic, making the L431L excellent replacements for low-voltage zener diodes in many applications, including on-board regulation and adjustable power supplies. When used with an opto-coupler, the L431L is ideal voltage reference in isolated feedback circuits for 3.3V switching-mode power supplies. The L431L shunt regulator is available in two voltage tolerances (0.5% & 1.0%) and three package options (TO-92, SOT-23-3 and SO-8).
Internal amplifier with 100 mA capability Programmable output voltage to 18V 0.25 typical output impedance Pin to pin compatible with TLV431A, TS431, SC431L & AS432 Trimmed bandgap design 0.5% & 1.0% with three package options Low output noise
APPLICATIONS
Linear regulator controller Precision voltage reference Switching power supplies Battery operating equipment Instrumentation PCs, Computer disk drives
SYMBOL & BLOCK DIAGRAM
Cathode (K)
Reference (R)
+
Cathod (K)
Reference (R)
1.24 Vref
Anode (A) Anode (A)
SYMBOL
FUNCTIONAL BLOCK DIAGRAM
1
APR-25-2002
NIKO-SEM
1.24V Low-Voltage Adjustable Precision Shunt Regulator
L431L
ABSOLUTE MAXIMUM RATINGS
PARAMETER Cathode-Anode Reverse Breakdown Voltage - VKA Anode-Cathode Forward Current - IAK Operating Cathode Current - IKA Reference Input Current - IREF Storage Temperature Range - TSTG Junction Temperature - TJ Lead Temperature (Soldering, 10 Seconds) - TL Continuous Power at 25 C - PD TO-92 SOIC-8 SOT-23 VALUE 20V 1A 100 mA 1 mA -65 to +150 C 150 C 300 C 700 mW 650 mW 200 mW
RECOMMENDED CONDITIONS
Parameter Cathode Voltage (VKA) Cathode Current (IK) Rating VREF to 18V 10 mA
TYPICAL THERMAL RESISTANCES
Package TO-92 SOIC-8 SOT-23 Typ. De-rating JA JC 160 C/W 80 C/W 6.3 mW/C 175 C/W 45 C/W 5.7 mW/C 575 C/W 150 C/W 1.7 mW/C
ELECTRICAL SPECIFICATIONS
(Ambient temperature must be derated base on power dissipation and package thermal characteristics. The conditions are: VKA = VREF and IK = 10 mA unless otherwise stated)
PARAMETER Output Voltage - VREF
Line Regulation - VREF Load Regulation - VREF Temperature Deviation - VREF Reference Input Current - IREF Reference Input Current 0 < TJ < 105 C Temperature Coefficient - IREF Minimum Cathode Current for Regulation - IK(MIN) Off State Leakage - IK(MIN) VREF = 0V, VKA = 15V Dynamic impedance VKA = Vref, f 1kHz IK = 0.1 mA to 100 mA
TEST TYP MAX UNITS CIRCUIT TA = 25 C, L432 (0.5%) 1.234 1.240 1.246 V 1 TA = 25 C, L432 (1%) 1.228 1.240 1.252 mV VKA = VREF to 15V 28 50 2 mV IK = 1 to 100 mA 3.9 6 1 mV 0 < TJ < 105 C 5 12 1 A 2.3 6 1
TEST CONDITIONS
MIN
0.14 0.2 40 0.25
0.6 1 500 0.4
A mA nA
1 1 3 1
2
APR-25-2002
NIKO-SEM
1.24V Low-Voltage Adjustable Precision Shunt Regulator
L431L
TEST CIRCUITS
VIN VKA VIN VKA VIN VKA
I REF
IK
R1 VREF R2
I REF
IK
I K (OFF)
- TEST CIRCUIT 1 (VKA = VREF )
- TEST CIRCUIT 2 ) (VKA > VREF
- TEST CIRCUIT 3 (OFF STATE CURRENT)
Applications Information - Stability
Selection of load capacitance when using L431L as a shunt regulator When the L431L is used as a shunt regulator, two options for selection of CL are recommended for optimal stability: 1. No load capacitance across the device, decouple at the load. 2. Large capacitance across the device, optional decoupling at the load. The reason for this is that L431L exhibits instability with capacitances in the range of 1nF to 1uf (approx.) at light cathode currents (up to 3mA typical). The device is less stable the lower the cathode voltage has been set for. Therefore while the device will be perfectly stable operating at a cathode current of 10mA with a 0.1uF capacitor across it, it will oscillate transiently during start-up as the cathode current passes through the instability region. Selecting a very low (or preferably, no)capacitance, or alternatively a high capacitance (such as 10uF) will avoid this issue altogether. Since the user will probably wish to have local decoupling at the load anyway, the most cost effective method is to use no capacitance at all directly across the device. PCB trace/via resistance and inductance prevent the local load decoupling from causing the oscillation during the transient start-up phase. Note : if the L431L is located right at the load, so the load decoupling capacitor is directly across it, then this capacitor will have to be 100pF or 1uF.
3
APR-25-2002
NIKO-SEM
1.24V Low-Voltage Adjustable Precision Shunt Regulator
L431L
Small-Signal Gain and Phase Shift VS. Frequency
Test Circuit for Small Signal Gain and Phase
OUT
15K 1 1 10uF 8.25K 2
3
Iz
1 L431L
232
2
2 GND
Stability Boundary Condition For Shunt Regulation VS. Cathode Current and Load Capacitance
Test Circuit for Stability
R 3 1 1 2 2 L431L CL
Iz
R1
R2
Cathode Current VS. Cathode Voltage
Cathode Current VS. Cathode Voltage
4
APR-25-2002
NIKO-SEM
1.24V Low-Voltage Adjustable Precision Shunt Regulator
Reference Voltage VS. Junction Temperature
L431L
Reference Impedance VS. Frequency
Ratio of Delta Reference Voltage to Delta Cathode Voltage VS. Junction Temperature
Vz = 16V to Vref
Vref /Vz (-mV/V)
Reference Input Current VS. Junction Temperature
5
APR-25-2002
NIKO-SEM
1.24V Low-Voltage Adjustable Precision Shunt Regulator
L431L
Off-State Cathode Current VS. Junction Temperature
Reference Impedance VS. Junction Temperature
PIN CONFIGURATIONS
rz ()
6
APR-25-2002
NIKO-SEM
1.24V Low-Voltage Adjustable Precision Shunt Regulator
L431L
DEVICE SELECTION GUIDE
Device Package Marking Tolerance L431LNB TO-92 L431LN 1% L431LM3B SOT-23-3 1LM3 1% L431LVB SOIC-8 L431LV 1% L431LM5B SOT-23-5 1LM5 1%
APPLICATION CIRCUIT
P01N02LM or P3055L Niko Vin Cin 5V or 12V 1K
+ +D
S G R1
+
Vout
K
Cout R
10uF
A L431L Niko
R2
Vout = (1 +
R1 R2
) Vref
7
APR-25-2002
NIKO-SEM
1.24V Low-Voltage Adjustable Precision Shunt Regulator
L431L
TO-92 MECHANICAL DATA
mm Min. 4.445 4.318 12.7 0.356 1.143 3.175 0.762 1.27 Typ. Max. 5.207 5.334 15.5 0.533 1.397 4.191 1.270 mm Min. 2.413 0.356 Typ. 2.540 Max. 2.667 0.533
Dimension A B C D E F G
Dimension H I J K L M N
8
APR-25-2002
NIKO-SEM
1.24V Low-Voltage Adjustable Precision Shunt Regulator
L431L
SOT-23 (M3) MECHANICAL DATA
mm Min. 2.60 1.40 2.70 1.00 0.00 0.35 0.4 Typ. 0.95 2.80 1.60 2.90 1.10 3.00 1.80 3.10 1.30 0.10 0.5 Max. mm Min. 0.10 0.37 Typ. 0.15 Max. 0.25
Dimension A B C D E F G
Dimension H I J K L M N
9
APR-25-2002
NIKO-SEM
1.24V Low-Voltage Adjustable Precision Shunt Regulator
L431L
SOIC-8 (D) MECHANICAL DATA
mm Min. 4.8 3.8 5.8 0.35 1.27 1.65 0.1 0.25 Typ. Max. 5.0 4.0 6.2 0.48 mm Min. 0.4 0.18 0.22 0 8 Typ. Max. 1.27 0.25
Dimension A B C D E F G
Dimension H I J K L M N
10
APR-25-2002
NIKO-SEM
1.24V Low-Voltage Adjustable Precision Shunt Regulator SOT-23 (M5) MECHANICAL DATA
mm mm Min. 2.60 0.37 Typ. 1.90(TYP) 2.80
L431L
Dimension A A1 A2 b C D E
Min. 1.0 0.00 0.70 0.35 0.10 2.70 1.40
Typ. 1.10 0.80 0.40 0.15 2.90 1.60
Max. 1.30 0.10 0.90 0.50 0.25 3.10 1.80
Dimension e H L
Max. 3.00
11
APR-25-2002


▲Up To Search▲   

 
Price & Availability of L431LVB

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X